Indexed by:
Abstract:
针对浮选气泡图像噪声大、边界弱、传统谷底检测算法对不同类型气泡分割不具普遍性等问题,提出了一种结合Contourlet多尺度边缘增强及自适应谷底边界检测的气泡分割方法。该方法通过对气泡图像进行Contourlet分解,得到多尺度多方向高频子带;通过对各方向子带的高频系数进行非线性增益处理,实现边缘增强和噪声抑制。对和声搜索算法的"调音"策略和参数设定方法进行了改进,对不同类型气泡图像自适应地获取谷底边界检测算法的最优参数,提取谷底并进行形态学的边缘完善处理。最后进行了分割实验,并与其它方法做了比较。结果表明,采用该方法对不同类型气泡进行分割时,平均检测效率(DER)和准确率(ACR)分别为91...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
光学精密工程
ISSN: 1004-924X
CN: 22-1198/TH
Year: 2016
Issue: 10
Volume: 24
Page: 2589-2600
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: