Indexed by:
Abstract:
现有子空间聚类方法通常以数据全局线性为前提,将每个样本点表示为其他样本点的线性组合,因而导致常见子空间聚类方法不能很好地应用于非线性数据.为克服全局线性表示的局限,借鉴流形学习思想,用k近邻局部线性表示代替全局线性表示,与稀疏子空间聚类和最小二乘子空间聚类方法相结合,提出局部稀疏子空间聚类和局部最小二乘子空间聚类方法,统称局部子空间聚类方法.在双月形数据、6个图像数据集和4个基因表达数据集上进行实验,实验结果表明该方法是有效的.
Keyword:
Reprint 's Address:
Version:
Source :
自动化学报
ISSN: 0254-4156
CN: 11-2109/TP
Year: 2016
Issue: 08
Volume: 42
Page: 1238-1247
Affiliated Colleges: