Indexed by:
Abstract:
现有的资源描述框架(RDF)数据分布式并行推理算法大多需要启动多个MapReduce任务,但有些算法对于含有实例三元组前件的RDFS/OWL规则的推理效率低下,整体推理效率不高.针对此问题,文中提出结合Rete的RDF数据分布式并行推理算法(DRRM).首先结合RDF数据本体,构建模式三元组列表和规则标记模型.在RDFS/OWL推理阶段,结合MapReduce实现Rete算法中的alpha阶段和beta阶段.然后对推理结果进行去重处理,完成一次RDFS/OWL全部规则推理.实验表明,文中算法能高效正确地实现大规模数据的并行推理.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
模式识别与人工智能
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2016
Issue: 05
Volume: 29
Page: 417-426
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: