Indexed by:
Abstract:
短路电流峰值对低压系统选择性保护及其断路器可靠分断十分重要,迄今尚缺乏深入研究。利用短路故障早期检测技术,在仿真分析短路故障早期参数的基础上,采用灰度关联度,得出对短路电流峰值的主要影响因素,并采用极端学习机(ELM)实现短路电流峰值的预测。仿真结果表明,灰色关联度可有效辨识短路电流主要因素,降低了短路电流预测特征变量维数。基于短路故障早期检测及极端学习机的短路电流预测方法,具有鲁棒性强且精度高的特点,为低压选择性保护技术的实现奠定基础。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电力系统保护与控制
ISSN: 1674-3415
CN: 41-1401/TM
Year: 2016
Issue: 07
Volume: 44
Page: 39-46
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: