Indexed by:
Abstract:
提出一种把非下采样Contourlet变换(NSCT)和区域特征相结合的图像融合新方法.该方法能够获取更好的空域和频域中的局部特征,同时提高融合图像的质量.用NSCT对已经配准的源图像在不同尺度和方向进行分解,低频子带分量采用区域平均能量和匹配度相结合的融合规则,高频子带分量使用改进的拉普拉斯能量和取大的融合规则.然后,利用逆NSCT变换对图像重构得到融合结果.实验结果表明,新方法优于其他三个常用的方法,且较好地保留图像的边缘和细节信息.
Keyword:
Reprint 's Address:
Email:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2017
Issue: 01
Volume: 45
Page: 80-85,90
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: