Indexed by:
Abstract:
目的针对目前低照度图像增强算法存在噪声敏感、易饱和等现象,提出了一种基于雾天退化模型的低照度图像间接增强算法。方法首先将低照度图像反转成为拟雾图;拟雾图与真实雾天图像有所不同,一是通常具有大面积明亮区域,二是大气光值较高。对于大面积明亮区域,暗原色先验理论并不适用,不容易精确估计相应透射率,因此,提出利用卷积神经网络求解透射率的方法;又针对全局大气光值易出现饱和现象,提出使用局部大气光值代替全局大气光值,从而得到大气光图;之后,利用导向滤波对透射率图和大气光图进行修正;最后基于大气散射模型还原出无雾图像,再次反转无雾图像得到低照度图像的增强结果。结果设计了3组实验,第1组实验为各算法的主观对照...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
中国图象图形学报
ISSN: 1006-8961
CN: 11-3758/TB
Year: 2017
Issue: 09
Volume: 22
Page: 1194-1205
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: