Indexed by:
Abstract:
针对浮选槽低照度环境下采集的泡沫图像对比度低、边缘弱、噪声干扰等问题,提出了一种结合自适应分数阶微分和非下采样Contourlet变换(NSCT)的泡沫图像多尺度增强算法.首先对泡沫图像进行NSCT多尺度分解,根据低频子带的梯度特征构造自适应分数阶微分阶次函数,结合改进的带亮度控制参数的Tiansi算子对低频子带图像进行增强处理;然后对各高频方向子带,根据能量分布特征自适应计算阈值,再结合尺度相关系数去除噪声,并通过非线性增益函数增强边缘系数;最后对处理后的图像进行NSCT重构.对不同大小类型的泡沫图像进行实验,结果表明:与现有算法相比,文中算法改善了图像的亮度,具有更高的对比度、清晰度和信息...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
华南理工大学学报(自然科学版)
ISSN: 1000-565X
CN: 44-1251/T
Year: 2018
Issue: 03
Volume: 46
Page: 92-102
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: