Abstract:
复Hilbert空间中的K-框架是框架的一种推广,是Gǎvruta在研究算子K的原子分解系统时引入的.本文首先在Hilbert空间H中引入K-Riesz基的概念,给出H中K-Riesz基界为A和B的K-Riesz基的两个等价刻画及K-框架界为A和B的K-框架的一个特征.众所周知,H中无冗框架与Riesz基是等价的,但是无冗K-框架与K-Riesz基是不等价的.接着研究H中无冗K-框架与K-Riesz基之间的关系.最后,考虑H中K-框架或K-Riesz基的扰动的稳定性.当K为H中的恒等算子时,这些结果与框架或Riesz基的相应结果是一致的.
Keyword:
Reprint 's Address:
Email:
Source :
中国科学:数学
Year: 2018
Issue: 05
Volume: 48
Page: 609-622
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: