Indexed by:
Abstract:
快速、准确地获取农作物类别信息对农业部门的生产管理、政策制定具有重要作用。目前基于时间序列数据进行农作物分类主要是采用长时间序列的中低分辨率影像,大量的混合像元限制了农作物的分类精度。在农作物分类的特征选择方面主要是采用归一化植被指数(normalized differential vegetation index, NDVI),而其他特征量的应用还相对较少。该文以新疆开孔河农业区为研究区域,利用2016年的Landsat7 ETM+、Landsat8 OLI影像数据集,基于时间加权的动态时间规整(time weighted dynamic time warping,TWDTW)方法开展农作物...
Keyword:
Reprint 's Address:
Email:
Version:
Source :
农业工程学报
ISSN: 1002-6819
CN: 11-2047/S
Year: 2019
Issue: 16
Volume: 35
Page: 180-188
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: