Indexed by:
Abstract:
现有可解释性文档分类常忽略对文本信息的深度挖掘,未考虑单词与单词上下文、句子与句子上下文之间的语义关系.为此,文中提出基于生成式-判别式混合模型的可解释性文档分类方法,在文档编码器中引入分层注意力机制,获得富含上下文语义信息的文档表示,生成精确的分类结果及解释性信息,解决现有模型对文本信息挖掘不够充分的问题.在PCMag、Skytrax评论数据集上的实验表明,文中方法在文档分类上性能较优,生成较准确的解释性信息,提升方法的整体性能.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
模式识别与人工智能
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2020
Issue: 11
Volume: 33
Page: 995-1003
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: