Indexed by:
Abstract:
建筑物是城市环境中的主要地物类型,从高分影像等数据中自动提取建筑物对于提升土地利用变化检测、城市规划与土地执法等业务的质量与效率具有重要意义。本文针对现有建筑物提取方法存在的边界提取不精确的问题以及采用手工特征表达图像信息的局限性,融合LiDAR数据与高分影像两种数据源的特征信息,提出一种基于SegNet语义模型的建筑物提取新方法。首先,对LiDAR数据预处理得到数字表面模型(DSM)、数字地形模型(DTM)、归一化数字表面模型(nDSM),利用高分影像NDVI值去除n DSM中部分树木点,得到结果影像nDSM_en;其次,分别获取LiDAR数据回波强度、表面曲率以及高分影像NDVI值3个特征...
Keyword:
Reprint 's Address:
Email:
Source :
地球信息科学学报
Year: 2020
Issue: 08
Volume: 22
Page: 1654-1665
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: