Abstract:
为了进一步提升原油期货价格预测的精准性,本文基于CEEMDAN分解算法和ELM极限学习机模型,利用PSO粒子群优化算法对机器学习模型进行参数寻优,进而构建了CEEMDAN-PSO-ELM模型用于原油期货价格预测.先基于CEEMDAN算法对原始价格序列进行分解,然后利用Lempel-Ziv复杂度指数对分量进行重构,得到高频、中频和低频重构分量,再采用PSO-ELM模型对每个重构分量进行预测,利用PACF系数选取模型输入变量,最终加总集成各分量预测结果.实证结果表明,与其他15种基准模型相比, CEEMDAN-PSO-ELM模型的预测性能最佳, MCS检验和DM检验也进一步证实了该模型的稳健性.
Keyword:
Reprint 's Address:
Email:
Source :
计算机系统应用
Year: 2020
Issue: 02
Volume: 29
Page: 28-39
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: