Indexed by:
Abstract:
模糊聚类分析方法具有较强的实用性,但传统的模糊C均值算法对数据集进行分类时有均分的趋势,对于数据集中各类样本数目相差较大的情况,其聚类结果不是很理想.因此,本文对FCM算法进行了改进,使之不但能够达到更好的分类效果,同时也更加适用于样本分类不均衡的聚类问题.文中还结合具体算例进行了聚类分析,得到了理想的分类效果.
Keyword:
Reprint 's Address:
Email:
Source :
模糊系统与数学
ISSN: 1001-7402
CN: 43-1179/O1
Year: 2004
Issue: z1
Volume: 18
Page: 304-308
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: