Indexed by:
Abstract:
在文本关联分类研究中,训练样本特征词的分布情况对分类结果影响很大.即使是同一种关联分类算法,在不同的样本集上使用,分类效果也可能明显不同.为此,本文利用加权方法改善文本关联分类器的稳定性,设计实现了基于规则加权的关联分类算法(WARC)和基于样本加权的关联分类算法(SWARC).WARC算法通过规则自适应加权调整强弱不均的分类规则;SWARC算法则自适应地调整训练样本的权重,从根本上改善不同类别样本特征词分布不均的情况.实验结果表明,无论是WARC还是SWARC算法,经过权重调整后的文本分类质量明显提高,特别是SWARC算法分类质量的提高极为显著.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
小型微型计算机系统
ISSN: 1000-1220
CN: 21-1106/TP
Year: 2007
Issue: 1
Volume: 28
Page: 116-121
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: