Indexed by:
Abstract:
肿瘤基因微阵列数据对于肿瘤诊断具有重要意义,由于基因数据具有数据样本少、基因维数高的特点,传统的分类器方法在样本数量不足或远远小于属性维数的情况下,易于陷入"过学习",分类精度较低.本文采用T-test选取获选基因,选取分布差异较大的基因,剔除无关基因,提高实验的整体效率;将支持向量机SVM的惩罚因子加入粒子群算法PSO的粒子编码,PSO同时对候选基因组和SVM参数进行搜索,减少SVM参数的不确定性,以此得到更精确的基因标签,确定好的分类因素.文章最后验证了算法的有效性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
信息系统工程
ISSN: 1001-2362
CN: 12-1158/N
Year: 2010
Issue: 10
Page: 49-51
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: