Indexed by:
Abstract:
提出一种基于非负矩阵分解(NMF、SNMF和WNMF)的中文倾向性句子识别算法.该算法首先构建倾向性特征矩阵,然后通过NMF、SNMF和WNMF算法分别来降维、提取潜在语义,最后采用支持向量机分类器识别中文倾向性句子.实验结果表明,与PCA和SVD相比,NMF、SNMF和WNMF算法能有效地降低维度、提取潜在语义,并提高倾向性句子识别的精度.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2011
Issue: 2
Volume: 39
Page: 192-197
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: