Home>Results

  • Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

范千 (范千.) [1] (Scholars:范千)

Indexed by:

CQVIP

Abstract:

针对大坝变形具有强非线性的特点以及在采用传统BP神经网络模型进行预报时存在学习速度慢、易陷入局部极小等问题,提出将极限学习机(ELM)方法用于大坝变形预报.该方法不仅可以简化网络参数选择过程,而且可以明显提高网络的训练速度,并具有良好的泛化性能.工程实例结果分析表明了ELM方法应用于大坝变形预报具有可行性和有效性.

Keyword:

大坝变形预报 极限学习方法 神经网络

Community:

  • [ 1 ] [范千]福州大学

Reprint 's Address:

  • 范千

Email:

Show more details

Version:

Related Keywords:

Related Article:

Source :

江南大学学报(自然科学版)

ISSN: 1671-7147

CN: 32-1666/N

Year: 2011

Issue: 4

Volume: 10

Page: 435-438

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 2

Online/Total:666/10065267
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1