Indexed by:
Abstract:
针对传统人工蜂群算法存在收敛速度慢和易陷入局部最优的问题,提出一种基于云模型的改进人工蜂群算法.通过正态云算子计算候选位置,自适应调整算法的局部搜索范围,以提高算法的收敛速度和勘探能力.为保持种群多样性,引入一个新的概率选择策略,使较差的个体具有较大的选择概率,并且利用历史最优解探索新的位置.标准复合函数测试表明,改进算法的收敛速度和求解精度得到提升,优于一些新近提出的改进人工蜂群算法.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用
ISSN: 1001-9081
CN: 51-1307/TP
Year: 2012
Issue: 9
Volume: 32
Page: 2538-2541
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: