Indexed by:
Abstract:
支持向量机(SVM)是一种针对分类和回归问题的统计学习理论,能有效地解决模式识别中的分类问题.该文提出了基于支持向量机的结构损伤识别方法:以归一的频率变化比(NFCR)和归一的损伤指标(NDSI)作为特征参数,训练支持向量机进行损伤识别.用一个12层钢混框架有限元数值模型进行验证,同时分析了影响SVM模型性能的主要因素.结果表明,本文提出的方法具有较高的损伤识别能力,而核参数的选择对识别精度有较大影响.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
海峡科学
ISSN: 1673-8683
CN: 35-1292/N
Year: 2012
Issue: 8
Page: 32-36
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: