Indexed by:
Abstract:
通过分析社会网络中社区发现问题的优化目标,构造了社区发现的多目标优化模型,提出一种网络社区发现的多目标分解粒子群优化算法.该算法采用切比雪夫法将多目标优化问题分解为多个单目标优化子问题,使用粒子群优化(PSO)算法对社区结构进行挖掘,并引入了一种新颖的基于局部搜索的变异策略以提高算法的搜索效率和收敛速度,该算法克服了单目标优化算法存在的解单一以及难以发现社区层次结构的缺陷.人工网络及真实网络上的实验结果表明,该算法能够快速准确地挖掘网络社区并揭示社区的层次结构.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用
ISSN: 1001-9081
CN: 51-1307/TP
Year: 2013
Issue: 9
Volume: 33
Page: 2444-2449
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: