Indexed by:
Abstract:
近年来,海量空间数据存储与处理日益成为地理信息科学领域的研究热点.其中,矢量空间数据更因其较高的复杂性,成为该类研究的重点问题.本文基于文档数据库,探究了多用户数据存储、矢量空间数据存储、海量矢量空间数据并行处理等问题,给出了存储和处理矢量空间数据的方法.在三层式云存储架构基础上,设计并实现了矢量空间数据云存储与处理系统VectorDB,达到了海量矢量空间数据的高效存储与处理要求.系统采用文档数据库MongoDB存储矢量空间数据,使用OGR库实现不同格式矢量空间数据的转换与存储,并用Hadoop对数据库中的数据进行并行计算,以及用mongo-hadoop作为MongoDB与Hadoop之间的连接器.通过实验对比了Vec-torDB与PostGIS的矢量空间数据读写性能,并分析了VectorDB与MongoDB在海量数据并行处理性能方面的差异.结果表明:VectorDB具有更好的读取性能和海量数据处理性能,适合多用户不同格式、不同属性矢量空间数据存储,对海量矢量数据存储与处理问题具有参考价值.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
地球信息科学学报
ISSN: 1560-8999
CN: 11-5809/P
Year: 2014
Issue: 4
Volume: 16
Page: 507-516
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: