• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

郭云 (郭云.) [1] | 李增元 (李增元.) [2] | 陈尔学 (陈尔学.) [3] | 田昕 (田昕.) [4] | 凌飞龙 (凌飞龙.) [5]

Indexed by:

CQVIP PKU CSCD

Abstract:

[目的]以黑河流域上游祁连山森林保护区为研究区,利用133个森林样地调查数据、Landsat-5 TM影像和ASTER GDEM产品为数据源,探讨地形对该流域森林地上生物量(above-ground biomass,AGB)估测的影响,以及选择合适的遥感估测方法反演该流域的森林AGB.[方法]首先利用青海云杉特殊的生境范围和绿色植被对比值植被指数(ratio vegetation index,RVI)的灵敏程度,及不同地物对纹理特征的不同响应,制定相应的决策树分类器,将研究区的土地覆盖类型分为两大类:森林(青海云杉)-非森林,并利用133个森林样地调查数据和Google Earth 高分辨率影像的12 722个采样点对分类结果进行验证(总体分类精度达到90.39%,Kappa系数为0.81);然后运用多元线性逐步回归估测法,以及结合随机森林算法(random forest,RF)优化后的k最近邻分类法(k-nearest neighbors,k-NN)进行森林AGB的遥感估测,对比SCS+C地形校正前后青海云杉森林AGB的估测结果,同时比较2种不同估测方法的反演效果;最后利用得到的最优估测方法反演整个研究区的森林AGB,生成黑河流域上游祁连山森林保护区的森林AGB的等级分布图.[结果]SCS+C地形校正前多元线性逐步回归的估测精度为R2=0.31,RMSE =34.41 t·hm-2,地形校正后多元线性逐步回归的估测精度为R2 =0.46,RMSE =30.51 t·hm-2;而基于SCS+C地形校正后的k-NN的交叉验证精度不仅明显高于地形校正前的精度,且显著优于多元线性逐步回归的估测结果,达到R2=0.54,RMSE=26.62 t·hm-2;另外基于最优的k-NN估测模型(窗口为7×7,采用马氏距离,k=3)反演的该流域青海云杉在2009年总的森林地上生物量为8.4×107t,平均森林地上生物量为96.20 t·hm-2.[结论]在地形复杂地区,运用SCS+C模型对地形进行适当校正,能够有效地消除太阳入射角变化引起的地表反射亮度的差异,使影像能够更准确地反映地表信息,提高森林AGB的遥感估测精度;在样本有限的情况下,相对于以大数定律作为理论基础的多元线性逐步回归估测法,k-NN能够避免发生过学习现象和样本不平衡问题,更适于该研究区青海云杉的森林AGB的估测.

Keyword:

k-NN Landsat-5 TM SCS+C地形校正 多元线性逐步回归 森林地上生物量 遥感估算

Community:

  • [ 1 ] [郭云]中国林业科学研究院
  • [ 2 ] [李增元]中国林业科学研究院
  • [ 3 ] [陈尔学]中国林业科学研究院
  • [ 4 ] [田昕]中国林业科学研究院
  • [ 5 ] [凌飞龙]福州大学

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

林业科学

ISSN: 1001-7488

CN: 11-1908/S

Year: 2015

Issue: 1

Volume: 51

Page: 140-149

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 1

Online/Total:2668/10817447
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1