Indexed by:
Abstract:
重要点分段法主要利用局部极值点进行划分,可以将时间序列分割成若干个相对较短但不重叠的子序列.该方法在进行序列划分时,能够既保留全局特征,又保持局部性质,是时间序列分段常用的方法之一.文章采用重要点分割法将序列分割成子序列,之后采用灰色GM(1,1)模型对各个子序列进行拟合.实验证明,基于灰色GM(1,1)模型与重要点的时间序列分段算法能够以更少的拟合误差,实现序列的压缩.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
统计与决策
ISSN: 1002-6487
CN: 42-1009/C
Year: 2016
Issue: 24
Page: 28-30
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: