Indexed by:
Abstract:
A field load test is an essential way to understand the behavior and fundamental characteristics of newly constructed bridges before they are allowed to go into service. The results of field static load tests and numerical analyses on the Qingzhou cable-stayed bridge (605 m central span length) over the Ming River, in Fuzhou, China are presented in the paper. The general test plan, tasks, and the responses measured are described. The level of test loading is about 80-95% of the code-specified serviceability load. The measured results include the deck profile, deck and tower displacements, and stresses of steel-concrete composite deck. A full three-dimensional finite-element model is developed and calibrated to match the measured elevations of the bridge deck. A good agreement is achieved between the experimental and analytical results. It is demonstrated that the initial equilibrium configuration of the bridge plays an important role in the finite-element calculations. Both experimental and analytical results have shown that the bridge is in the elastic state under the planned test loads, which indicates that the bridge has an adequate load-carrying capacity. The calibrated finite-element model that reflects the as-built conditions can be used as a baseline for health monitoring and future maintenance of the bridge. © 2007 ASCE.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Bridge Engineering
ISSN: 1084-0702
Year: 2007
Issue: 2
Volume: 12
Page: 261-270
3 . 1 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: