Indexed by:
Abstract:
MapReduce framework of cloud computing has an effective way to achieve massive text categorization. In this paper a distributed parallel text training algorithm in cloud computing environment based on multi-class Support Vector Machines(SVM) is designed. In cloud computing environment Map tasks realize distributing various types of samples and Reduce tasks realize the specific SVM training. Experimental results show that the execution time of text training decreases with the number of Reduce tasks increasing. Also a parallel text classifying based on cloud computing is designed and implemented, which classify the unknown type texts. Experimental results show that the speed of text classifying increases with the number of Map tasks increasing. © (2013) Trans Tech Publications, Switzerland.
Keyword:
Reprint 's Address:
Email:
Source :
Applied Mechanics and Materials
ISSN: 1660-9336
Year: 2013
Volume: 311
Page: 158-163
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: