• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhou, B. (Zhou, B..) [1] | Luo, H. (Luo, H..) [2] | Chen, S. (Chen, S..) [3]

Indexed by:

Scopus

Abstract:

In this study, TbDy-Fe giant magnetostrictive thin films were firstly prepared by ion beam sputtering deposition (IBSD) method on water-cooled substrates, and then the films were annealed at different temperatures under vacuum condition. An Inductively Coupled Plasma Spectrometry, Scanning Electron Microscope (SEM), Scanning Probe Microscope (SPM), and Transmission Electron Microscope (TEM) were used to investigate the surface morphology and microstructure for TbDy-Fe GMFs. Besides, DWS type Ultra-precision Displacement Meter was used for measuring magnetostriction coefficient of the films by cantilever method. The results showed that TbDy-Fe GMFs of compact amorphous microstructure, smooth surface morphology, and high interfacial adhesion had been deposited under the fixed fabrication procedure. Moreover, as annealing temperature increased, microstructure of the films had been changed as following order: amorphous → amorphous + microcrystalline → nano-polycrystalline (crystallization temperature was about 400°C ). It was noted that magnetostriction of TbDy-Fe GMFs could be drastically improved, particularly for low magnetic field magnetostriction sensitivity when annealed at about 400°C (the value of λ was about 500ppm at 200KA·m-1). © (2011) Trans Tech Publications.

Keyword:

Magnetostriction; Microstructure; TbDy-Fe GMFs; Vacuum annealing

Community:

  • [ 1 ] [Zhou, B.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
  • [ 2 ] [Luo, H.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
  • [ 3 ] [Chen, S.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

Reprint 's Address:

  • [Zhou, B.]College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

Show more details

Related Keywords:

Related Article:

Source :

Advanced Materials Research

ISSN: 1022-6680

Year: 2011

Volume: 150-151

Page: 1305-1310

Language: English

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:65/10066180
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1