Indexed by:
Abstract:
Feature fusion method has improved steganographic detection performance based on classical feature, however there are some drawbacks of this: without analysing the correlation of the basic features, it's only a simple combination of features and lacks standard for features selection; serial fusion feature always has high dimension, which will lead great time cost and possibility of curse of dimensionality. In this paper, we proposed a novel framework for measuring the feature selection and fusing two selected feature sets in steganographic detection field, based on KCCA theory. KCCA feature fusion method can outperform single feature and achieve similar performance to serial feature fusion method in steganographic detection field, while only costing 1/101/8 of original time. So it has better practicability. © 2011 IEEE.
Keyword:
Reprint 's Address:
Email:
Source :
Proceedings 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, MEC 2011
Year: 2011
Page: 2442-2446
Language: English
Affiliated Colleges:
操作日志
管理员 2024-08-06 02:03:03 更新被引
管理员 2020-11-20 11:50:17 创建