Indexed by:
Abstract:
In the traditional image annotation methods, the manual selection of features is time-consuming and laborious. In the traditional label propagation algorithm, semantic neighbors are ignored. Consequently visual similarity and semantic dissimilarity are caused and annotation results are affected. To solve these problems, an automatic image annotation method combining semantic neighbors and deep features is proposed. Firstly, a unified and adaptive depth feature extraction framework is constructed based on deep convolutional neural network. Then, the training set is divided into semantic groups and the neighborhood image sets of the unannotated images are set up. Finally, according to the visual distance, the contribution value of each label of the neighborhood images is calculated and the keywords are obtained by sorting their contribution values. Experiments on benchmark datasets show that compared with the traditional synthetic features, the proposed deep feature possesses lower dimension and better effect. The problem of visual similarity and semantic dissimilarity in visual nearest neighbor annotation method is improved, and the algorithm effectively enhances the accuracy and the number of accurate predicted tags. © 2017, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
Year: 2017
Issue: 3
Volume: 30
Page: 193-203
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: