Indexed by:
Abstract:
Hypochlorite (ClO-) is one of the most important reactive oxygen species (ROS), which plays an important role in sustaining human innate immunity during microbial invasion. Moreover, ClO- is a powerful oxidizer for water treatment. The safety of drinking water is closely related to its content. Herein, m-phenylenediamine (mPD) is used as a precursor to prepare carbon dots (named m-CDs) with highly fluorescent quantum yield (31.58% in water), and our investigation shows that the strong fluorescent emission of m-CDs can be effectively quenched by ClO-. Based on these findings, we developed a novel fluorescent nanoprobe (m-CDs) for highly selective detection of ClO-. The linear range was from 0.05 to 7 μM (R2 = 0.998), and the limit of detection (S/N = 3) was as low as 0.012 μM. Moreover, a portable agarose hydrogel solid matrix-based ratiometric fluorescent nanoprobe (m-CDs at[Ru(bpy)3]2+) sensor was subsequently developed for visual on-site detection of ClO- with the naked eyes under a UV lamp, suggesting its potential in practical application with low cost and excellent performance in water quality monitoring. Additionally, intracellular detection of exogenous ClO- was demonstrated via ratiometric imaging microscopy. © 2017 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
ACS Sensors
ISSN: 2379-3694
Year: 2017
Issue: 11
Volume: 2
Page: 1684-1691
5 . 7 1 1
JCR@2017
8 . 3 0 0
JCR@2023
ESI HC Threshold:226
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: