Indexed by:
Abstract:
Traditional filter-based feature selection methods calculate some scores of each feature independently to select features in a statistical or geometric perspective only, however, they ignore the correlation of different features. To solve this problem, an unsupervised feature selection method based on locality preserving projection and sparse representation is proposed. The nonnegativity and sparsity of feature weights are limited to select features in the proposed method. The experimental results on 4 gene expression datasets and 2 image datasets show that the method is effective. ©, 2015, Journal of Pattern Recognition and Artificial Intelligence. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2015
Issue: 3
Volume: 28
Page: 247-252
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: