Indexed by:
Abstract:
The obstacle-avoiding rectilinear Steiner minimal tree (OARSMT) problem is a fundamental problem in very large-scale integrated circuit physical design and can be reduced to the Steiner tree problem in graphs (GSTP), which can be solved by using three types of common methods: classic heuristics, local search algorithms, or computational intelligence algorithms. However, classic heuristics have poor solution qualities; local search algorithms easily fall into the problem of the local optimum; and the searching effects of the existing computational intelligence algorithms are poor for this problem. In order to improve the solution quality, we propose a novel discrete artificial bee colony algorithm for constructing an obstacle-avoiding rectilinear Steiner tree. We first generate the escape graph for the OARSMT problem. Then, we search for a near-optimal solution consisting of some edges of escape graph by using the discrete ABC algorithm. We apply a key-node neighborhood configuration for the local search strategy and introduce two local search operators. We then naturally use a key-node-based encoding scheme for representing the feasible solution and obtain a tight searching scope. We employ a modified classic heuristic as the encoder that can produce a feasible solution. Experiments conducted on both general GSTP and very large-scale integrated circuit instances reveal the superior performance of the proposed method in terms of the solution quality among the state-of-the-art algorithms. © 2014, The Natural Computing Applications Forum.
Keyword:
Reprint 's Address:
Email:
Source :
Neural Computing and Applications
ISSN: 0941-0643
Year: 2015
Issue: 4
Volume: 26
Page: 875-898
1 . 4 9 2
JCR@2015
4 . 5 0 0
JCR@2023
ESI HC Threshold:183
JCR Journal Grade:2
Cited Count:
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: