Indexed by:
Abstract:
针对强背景噪声下结构模态参数难识别以及传统自适应随机共振单参数优化的不足,提出一种基于改进多粒子群协同优化算法的多参数同步优化的自适应随机共振方法,结合利希尔伯特变换来识别出结构的模态参数.该算法能够更快得到最佳随机共振系统结构参数,自适应地实现非线性系统、输入信号和噪声之间的最佳匹配,削弱强背景噪声响应中的噪声,提高响应的输出信噪比.数值仿真和试验均表明,该方法参数寻优效率高,简单易行,能够成功识别出强背景噪声下结构的模态参数.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2017
Issue: 4
Volume: 45
Page: 472-480
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: