Indexed by:
Abstract:
To improve the stability of extreme learning machine(ELM), an extreme learning machine based on improved particle swarm optimization (IPSO-ELM) is proposed. By combining the improved particle swarm optimization with ELM, IPSO-ELM can find the optimal number of nodes in the hidden layer as well as the optimal input weights and hidden biases. Furthermore, a mutation operator is introduced into IPSO-ELM to enhance the diversity of swarm and improve the convergence speed of the random search process. Then, to handle the large-scale electrical load data, a parallel version of IPSO-ELM named PIPSO-ELM is implemented with the popular parallel computing framework Spark. Experimental results of real-life electrical load data show that PIPSO-ELM obtains better stability and scalability with higher efficiency in large-scale electrical load prediction. © 2016, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2016
Issue: 9
Volume: 29
Page: 840-849
Cited Count:
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: