Indexed by:
Abstract:
To tackle the problems of the underutilization of context, the sparseness of data and the dependence on human-designed features in existing Chinese microblog sentiment classification methods, a Chinese microblog sentiment classification method based on convolutional neural network is proposed. Firstly, microblog messages are extended using the interaction context, and then they are initialized with dense vectors in the low-dimension space. Secondly, a convolutional neural network model is constructed for extracting and combining features. Finally, the sentiment of each microblog message is estimated by softmax function. Experimental results show that compared with baselines, the proposed method obtains higher accuracies and F1 values. © 2016, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Pattern Recognition and Artificial Intelligence
ISSN: 1003-6059
CN: 34-1089/TP
Year: 2016
Issue: 12
Volume: 29
Page: 1075-1082
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2