• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wong, F.-C. (Wong, F.-C..) [1] | Xiao, J. (Xiao, J..) [2] | Wang, S. (Wang, S..) [3] | Ee, K.-Y. (Ee, K.-Y..) [4] | Chai, T.-T. (Chai, T.-T..) [5]

Indexed by:

Scopus

Abstract:

Background: The potential applications of food-derived antioxidant peptides as additives, nutraceuticals and therapeutic agents have fueled current interests to discover them from diverse plant sources. A growing number of antioxidant peptides have been identified from edible plant sources, as well as plant-based agricultural and food-processing by-products. Scope and approach: We summarized recent progress in the research of plant-derived antioxidant peptides, particularly their biological effects, mechanisms, and structure-activity relationship. Many studies assessed the potency of antioxidant peptides by using chemical assays. However, the outcome of chemical methods may not reflect the biological significance. Thus, this review focusses on antioxidant peptides whose effectiveness was demonstrated by using cellular and/or animal models. This review pays particular attention to studies which successfully determined the sequences of antioxidant peptides under investigation. Due to the scarcity of the assessment of pure antioxidant peptides in animal models, in vivo evidence from well-characterized peptide fractions or hydrolysates will also be discussed. Key findings and conclusions: Plant-derived antioxidant peptides diminished reactive oxygen species production, besides activating endogenous antioxidant defenses in cellular models. Some such peptides exerted protection by modulating pro- and anti-apoptotic proteins as well as gene and protein expression of antioxidant enzymes. By using cellular models, the intestinal absorption and metabolism of such peptides were elucidated. Plant protein hydrolysates enhanced antioxidant protection in animal models, often by upregulating antioxidant enzyme activities in various body tissues. The structure-activity relationship of plant-derived antioxidant peptides is not well-understood. Nevertheless, information connecting peptide secondary structure to cellular antioxidant effects has emerged. © 2020 Elsevier Ltd

Keyword:

Animal model; Cellular antioxidant activity; Plant-derived antioxidant peptide; Reactive oxygen species; Structure-activity relationship

Community:

  • [ 1 ] [Wong, F.-C.]Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
  • [ 2 ] [Wong, F.-C.]Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
  • [ 3 ] [Xiao, J.]College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
  • [ 4 ] [Wang, S.]College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
  • [ 5 ] [Ee, K.-Y.]Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
  • [ 6 ] [Ee, K.-Y.]Department of Agricultural and Food Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
  • [ 7 ] [Chai, T.-T.]Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia
  • [ 8 ] [Chai, T.-T.]Centre for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar, 31900, Malaysia

Reprint 's Address:

  • [Chai, T.-T.]Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul RahmanMalaysia

Show more details

Related Keywords:

Related Article:

Source :

Trends in Food Science and Technology

ISSN: 0924-2244

Year: 2020

Volume: 99

Page: 44-57

1 2 . 5 6 3

JCR@2020

1 5 . 1 0 0

JCR@2023

ESI HC Threshold:116

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 219

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:141/9984610
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1