Indexed by:
Abstract:
大量结构无序、内容片面的碎片化信息以文本、图像、视频、网页等不同模态的形式,高度分散存储在不同数据源中,现有的研究通过构建视觉问答系统(visual question answering,VQA),实现对多模态碎片化信息的提取、表达和理解.视觉问答任务给定与图像相关的一个问题,推理相应的答案.在视觉问答任务的基本背景下,以设计出完备的图像碎片化信息问答的框架与算法为目标,重点研究包括图像特征提取、问题文本特征提取、多模态特征融合和答案推理的模型与算法.构建深度神经网络模型提取用于表示图像与问题信息的特征,结合注意力机制与变分推断方法关联图像与问题2种模态特征并推理答案.实验结果表明:该模型能够有效提取和理解多模态碎片化信息,并提高视觉问答任务的准确率.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机研究与发展
ISSN: 1000-1239
CN: 11-1777/TP
Year: 2018
Issue: 12
Volume: 55
Page: 2600-2610
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: