Indexed by:
Abstract:
This Letter reports the synthesis approach and application of colloidal suspensions containing gradient alloy quantum dots (QDs) and silica hybrid spheres with improved thermal and photostability, invisible QD aggregation, and high material compatibility. These hybrid nanospheres are characterized by using silica spheres as cores, adsorbing QDs as one shell, and then coating a silica layer as another shell (termed SiO2-QD-SiO2). They were synthesized by using Stöber and adsorption methods. The experimental conditions affecting the optical properties were fully investigated. A light-guiding microstructure array (LGMA) was fabricated and tested for photoluminescence demonstration. After accelerated aging tests for 240 h under 85 °C, 40% relative humidity, and 450 nm blue light excitation, the luminance of the SiO2-QD-SiO2 LGMA remained stable, which was 1.6 times greater than that of untreated QD samples. This structure with long-term photothermal stability could pave the way for displays or lighting applications. © 2020 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Physical Chemistry Letters
ISSN: 1948-7185
Year: 2020
Page: 1428-1434
6 . 4 7 5
JCR@2020
4 . 9 0 0
JCR@2023
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: