Indexed by:
Abstract:
An adaptive H-infinity decentralized fault-tolerant control algorithm is proposed for a free-floating space robot under partial loss of actuator effectiveness.The dynamics equation of the space robot is established by the use of Lagrange method.The system is decentralized into several subsystems based on the idea of decentralization and the effective factor representing the control ability of the actuator is integrated into each subsystem.The actuator failure of a subsystem will not affect the normal operation of the adjacent actuator.The fault-tolerant control of the whole system is realized by designing unified fault-tolerant algorithm for each subsystem.Simulation results show that the algorithm has a higher tracking speed and higher tracking accuracy compared with the existing non-singular terminal sliding mode fault-tolerant algorithm. © 2019, Editorial Office of Chinese Journal of Computational Mechanics. All right reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Chinese Journal of Computational Mechanics
ISSN: 1007-4708
Year: 2019
Issue: 4
Volume: 36
Page: 477-482
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: