Indexed by:
Abstract:
针对密闭、长流程的蒸发过程由于待浓缩溶液黏度高或腐蚀性强、设备易结垢、工况变化复杂等原因引起的在线预测模型难以建立的问题,提出了一种基于混沌粒子群优化相关向量机(CPSO-RVM)的预测模型.基于贝叶斯学习框架构建了蒸发过程相关向量机预测模型,克服模型对核函数类型的限制和数据敏感性,在此基础上利用混沌粒子群算法对预测模型的核函数进行优化,获得计算量小、泛化性能优的在线预测模型.某厂实际蒸发过程生产数据的算例表明,在存在新蒸汽和原液干扰、设备结垢的整个清洗周期内,CPSO-RVM模型都能获得很好的预测效果,并且比偏最小二乘回归模型(PLSR)和最小二乘支持向量机模型(LSSVM)精度更高,能为实际蒸发过程的在线控制提供参考.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
南昌大学学报(理科版)
ISSN: 1006-0464
CN: 36-1193/N
Year: 2018
Issue: 2
Volume: 42
Page: 174-179
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1