Indexed by:
Abstract:
Recently emerging perovskite quantum dots (PQDs) with several excellent optical properties, such as quantum efficiency, narrow band emission, and tunable emission wavelength, have promising applications in solar cells and light emitting diodes. However, relatively rare applications of PQDs can be found in the field of sensing, mainly due to the very easy degradation of PQDs upon exposure to water or ambient humidity. In this work, for the first time CH 3 NH 3 PbBr 3 PQDs were encapsulated into superhydrophobic silica aerogels (AGs) to protect PQDs from being degraded by water. The synthesized PQDs@AGs not only maintain the strong fluorescence emission activity of PQDs but also show excellent stability in the presence of water. Additionally, PQDs@AGs have abundant pores making them very suitable for gas sensing. For improving sensing performances, 3D-printing technology is introduced into gas cell design and fabrication for the first time. Finally, a novel, sensitive, selective, and reversible fluorescence sensor for SO 2 gas based on the PQDs@AGs functional material and the 3D-printed gas cell has been developed. Copyright © 2019 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Analytical Chemistry
ISSN: 0003-2700
Year: 2019
Issue: 8
Volume: 91
Page: 5058-5066
6 . 7 8 5
JCR@2019
6 . 8 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: