Indexed by:
Abstract:
DNA as a programmable molecule shows great potential in a wide variety of applications, with the dynamic DNA nanodevices such as DNA motors and walkers holding the most promise in controlled functions for biosensing and nanomedicine. However, a motor or walker that consists of DNA exclusively has not been shown to function within cells because of its susceptibility to endogenous nuclease-mediated degradation. In this contribution, we demonstrate a Y-shaped backbone-rigidified triangular DNA scaffold (YTDS)-directed DNAzyme walker that functions inside living cells to detect microRNAs (miRNAs) with high sensitivity. A novel Y-shaped backbone offers access to geometrically well-defined configurations and increases the rigidity of DNA assemblies, providing a unique, circular, and rigid DNA track within living cells without non-nucleic acid auxiliary materials and enabling the stepwise movement of DNAzyme in an inchworm fashion. This strategy is extended to the construction of larger rigid planar geometric polygon-based DNA walkers, demonstrating unprecedented opportunities to build dynamic DNA nanostructures with precise geometry and versatile functionality. Copyright © 2019 American Chemical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Analytical Chemistry
ISSN: 0003-2700
Year: 2019
Issue: 24
Volume: 91
Page: 15678-15685
6 . 7 8 5
JCR@2019
6 . 8 0 0
JCR@2023
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: