Indexed by:
Abstract:
Cu-steel bimetallic porous composite structures can be used as lightweight, damping, and electro-conductive elements in critical environments where traditional single materials become ineffective. In the present work, a novel Cu-steel bimetallic porous composite with a double-helix entangled structure was developed. The mechanical properties (static stiffness, loss factor, and tangent modulus) of the as-synthesized composite were characterized by compressive tests, and its electrical sensitivity to compressive force was examined by mechanical–electrical coupling tests. The effect of the copper/steel weight ratio on mechanical and electrical performances was analyzed in detail. It is found that the Cu-steel bimetallic porous composite with a relatively high weight ratio has a larger average loss factor and lower stiffness than that with a low weight ratio. The structural characteristics and complex microstructural changes of the deformed specimen allow the tangent modulus and stiffness to exhibit a non-proportional relationship with the weight ratio over a range of displacement. The resistance-force curves exhibit an obvious nonlinearity and degradation due to the contact between internal bimetallic wires. The resistance-stiffness history reveals that the mitigation of electrical conductivity continued with the enlargement of stiffness and weight ratio. © 2020 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Composite Structures
ISSN: 0263-8223
Year: 2021
Volume: 255
6 . 6 0 3
JCR@2021
6 . 3 0 0
JCR@2023
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: