Indexed by:
Abstract:
Transition-metals have emerged as promising catalyst candidates for improving the hydrogen storage properties of MgH2. However, the preparation of uniformly dispersed and extra-fine transition-metals catalysts with high catalytic activity still remains a challenge. In this paper, an electrospinning-based reduction approach is presented to generate nanostructured nickel catalyst, which is protected from irreversible fusion and aggregation in subsequent high-temperature pyrolysis, in carbon nanofibers (Ni@C) in situ. The obtained Ni@C reveals remarkable catalytic effect on improving the hydrogen storage properties of MgH2. For example, the MgH2-10 wt%Ni@C composite delivers dehydrogenation capacities of 5.79 wt% and 6.12 wt% at 280 °C and 300 °C, respectively, whereas the as-milled MgH2 hardly decomposes at the same temperature. By Arrhenius plots, the calculated Ea of the dehydrogenation of MgH2-10 wt%Ni@C is 93.08 kJ mol−1, which is 94.33 kJ mol−1 lower than that of the as-milled MgH2. Furthermore, the microstructure of Ni@C is remained during the re/dehydrogenation process and the Ni nanoparticles are still distributed homogeneously in the composite, accounting for the excellent cycling performance. This study could render combinations of ultrafine metal nanoparticles with carbon accessible, thereby, extending opportunities in catalytic applications for hydrogen storage. © 2020 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Alloys and Compounds
ISSN: 0925-8388
Year: 2021
Volume: 851
6 . 3 7 1
JCR@2021
5 . 8 0 0
JCR@2023
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count: 63
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: