Indexed by:
Abstract:
合理的地铁站点分类对站点管理和交通规划有重要的意义.针对现有的站点聚类分析研究中均采用单一的聚类方法取得的效果不够理想,鲁棒性不高等问题,提出了基于聚类集成方法的地铁站点类型研究方法,并提出了相应的稳定性判别指标.该方法结合福州地铁1号线工作日客流数据,首先运用层次聚类、k均值聚类和模糊C均值聚类三种方法产生基聚类;其次通过基于共协关系矩阵的集成方法实现对基聚类的集成.实验结果表明,聚类集成相较于其他三种方法在数据集划分上更加稳定.最终将福州地铁1号线站点分为超高流量站点、高流量站点、中流量站点以及低流量站点4类.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
小型微型计算机系统
ISSN: 1000-1220
CN: 21-1106/TP
Year: 2019
Issue: 1
Volume: 40
Page: 236-240
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: