Indexed by:
Abstract:
文中提出一种离散和连续混合属性的复杂信息系统增量式属性约简算法.首先,将粒计算模型中的知识粒度在混合型信息系统下进行推广,提出了邻域知识粒度,并构造出基于邻域知识粒度的非增量式属性约简算法,然后在混合型信息系统下研究了邻域知识粒度随对象增加时的增量式计算,理论证明了该计算方式的高效性,最后提出了基于邻域知识粒度的混合信息系统增量式属性约简算法.UCI数据集的实验结果表明,所提出的算法在混合型信息系统中具有很高的增量式属性约简性能.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
华南理工大学学报(自然科学版)
ISSN: 1000-565X
CN: 44-1251/T
Year: 2019
Issue: 6
Volume: 47
Page: 18-30
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: