Indexed by:
Abstract:
Photocatalysts (g-C3N4-P25) and photosynthetic bacteria (PSB) were encapsulated in calcium alginate beads by self-assembly, and its ability to treat simulated azo dyes -contaminated wastewater was studied. The removal efficiency by this photocatalysis-microorganism composite was 94% for the dye reactive brilliant red X-3B and 84.7% for COD of synthetic wastewater samples, which were significantly higher than immobilized photocatalysis and PSB. Intermediates formed during the oxidation process were analyzed by UV-visible spectrophotometry, FT-IR and gas chromatography-mass spectrometry (GC-MS). Based on the results, the degradation pathway was inferred as follows. First, the azo dye was converted into aniline and phenol derivatives, through combined photocatalytic and biocatalytic degradation of X-3B by composites. Then, the aromatic rings of these products were attacked by free radicals generated by the photocatalyst, leading to the formation of linear alkyl compounds and preventing the inhibition of bacterial metabolism by aromatic hydrocarbon. Finally, the linear alkyl products could be degraded and mineralized to CO2 and H2O by the photosynthetic bacteria. © 2018, Science Press. All right reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Acta Scientiae Circumstantiae
ISSN: 0253-2468
CN: 11-1843/X
Year: 2018
Issue: 7
Volume: 38
Page: 2632-2640
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: