Indexed by:
Abstract:
Graphene nanoplatelet (GNP) and multi-walled carbon nanotube (MWCNT) hybrid films were prepared with the aid of surfactant Triton X-100 and sonication through a vacuum filtration process. The influence of GNP content ranging from 0 to 50 wt.% on the mechanical and electrical properties was investigated using the tensile test and Hall effect measurement, respectively. It showed that the tensile strength of the hybrid film is decreasing with the increase of the GNP content while the electrical conductivity exhibits an opposite trend. The effectiveness of the MWCNT/GNP hybrid film as a strain sensor is presented. The specimen is subjected to a flexural loading, and the electrical resistance measured by a two-point probe method is found to be function of applied strain. Experimental results demonstrate that there are two different linear strain-sensing stages (0–0.2% and 0.2–1%) in the resistance of the hybrid film with applied strain. The strain sensitivity is increasing with the increase of the GNP content. In addition, the repeatability and stability of the strain sensitivity of the hybrid film were conformed through the cyclic loading–unloading tests. The MWCNT/GNP hybrid film shows promising application for strain sensing. © 2018 by the authors. Licensee MDPI, Basel, Switzerland.
Keyword:
Reprint 's Address:
Email:
Source :
Nanomaterials
ISSN: 2079-4991
Year: 2018
Issue: 10
Volume: 8
4 . 0 3 4
JCR@2018
4 . 4 0 0
JCR@2023
ESI HC Threshold:284
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: