• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

郭茂强 (郭茂强.) [1] | 黄云云 (黄云云.) [2] (Scholars:黄云云) | 赵强 (赵强.) [3] | 张经伟 (张经伟.) [4] (Scholars:张经伟)

Indexed by:

CQVIP PKU

Abstract:

针对滚动轴承振动信号非线性、非平稳的特点,提出基于迭代滤波分解(iterative filtering decomposition,IFD)提取各分量特征,结合核极限学习机(kernel extreme learning machine,KELM)的故障诊断方法.通过对原始信号进行IFD分解,得到一组本征模态函数(intrinsic mode functions,IMF).计算包含主要故障信息在内的IMF分量能量与排列熵组成的故障特征向量,将特征向量作为KELM输入识别轴承的故障类型.实验分析结果表明,以IFD作为预处理器的特征融合方法比经验模态分解(empirical mode decomposition,EMD)为预处理器的特征融合方法有更高的故障识别率,并且该方法在少量样本情况下仍能有效识别故障类型.

Keyword:

排列熵 故障诊断 核极限学习机 滚动轴承 迭代滤波分解

Community:

  • [ 1 ] [郭茂强]福州大学
  • [ 2 ] [黄云云]福州大学
  • [ 3 ] [赵强]福州大学
  • [ 4 ] [张经伟]福州大学

Reprint 's Address:

Email:

Show more details

Version:

Related Keywords:

Related Article:

Source :

福州大学学报(自然科学版)

ISSN: 1000-2243

CN: 35-1337/N

Year: 2020

Issue: 3

Volume: 48

Page: 341-347

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: -1

Chinese Cited Count:

30 Days PV: 2

Online/Total:63/10044245
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1