Indexed by:
Abstract:
针对滚动轴承振动信号非线性、非平稳的特点,提出基于迭代滤波分解(iterative filtering decomposition,IFD)提取各分量特征,结合核极限学习机(kernel extreme learning machine,KELM)的故障诊断方法.通过对原始信号进行IFD分解,得到一组本征模态函数(intrinsic mode functions,IMF).计算包含主要故障信息在内的IMF分量能量与排列熵组成的故障特征向量,将特征向量作为KELM输入识别轴承的故障类型.实验分析结果表明,以IFD作为预处理器的特征融合方法比经验模态分解(empirical mode decomposition,EMD)为预处理器的特征融合方法有更高的故障识别率,并且该方法在少量样本情况下仍能有效识别故障类型.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
福州大学学报(自然科学版)
ISSN: 1000-2243
CN: 35-1337/N
Year: 2020
Issue: 3
Volume: 48
Page: 341-347
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: