Indexed by:
Abstract:
针对基于激光雷达(LiDAR)的三维点云数据处理及道路障碍物检测的问题,提出一种基于深度学习的路障碍物检测方法.首先,采用统计滤波算法对原始点云进行离群点的剔除处理;其次,提出一种端到端的深度神经网络VNMax,利用最大池化对区域候选网络(RPN)架构进行优化,构建改进的目标检测层;最后,在KITTI数据集上进行了训练及测试实验.结果显示,经过滤波处理,点云中各点之间的平均距离得到有效减少.通过对在KITTI数据集的简单、中等和困难任务的车辆定位处理结果比较得出,所提方法的平均精度比VoxelNet(Unofficial)分别提高了11.3个百分点、6.02个百分点和3.89个百分点.实验测试结果表明,统计滤波算法仍是有效的三维点云数据处理手段,最大池化模块可以提高深度神经网络的学习性能和目标定位能力.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用
ISSN: 1001-9081
CN: 51-1307/TP
Year: 2020
Issue: 8
Volume: 40
Page: 2428-2433
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: