Indexed by:
Abstract:
为了更好地挖掘投资者情绪,解决在股市文本情绪分析过程中,现有情感词典构建方法自动化程度低、行业特异性不足和精确度不足等问题.在构建基本情感词典的基础上,Word2vec对自动添加的高频情感词语进行极性判断与赋值,并将情感词典构建改为优化问题,采用改进模拟退火算法对情感词典的词语分值进行优化,提高股市情感词典性能.实验结果表明:该方法所构建的股市情感词典可以有效识别股市文本情绪,提升文本覆盖率,具有更强的行业特异性,提升情绪分析准确性,可更好用于投资者情绪相关研究.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
科学技术与工程
ISSN: 1671-1815
CN: 11-4688/T
Year: 2020
Issue: 21
Volume: 20
Page: 8683-8689
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: